The first and second largest Merrifield-Simmons indices of trees with prescribed pendent vertices

Maolin Wang,* Hongbo Hua, and Dongdong Wang
Department of Computing Science, Huaiyin Institute of Technology, Huaian, Jiangsu 223000, People's Republic of China
E-mail: mlw.math@gmail.com

Abstract

The Merrifield-Simmons index $\sigma(G)$ of a graph G is defined as the number of subsets of the vertex set, in which any two vertices are non-adjacent, i.e., the number of independent-vertex sets of G. By $T(n, k)$ we denote the set of trees with n vertices and with k pendent vertices. In this paper, we investigate the Merrifield-Simmons index $\sigma(T)$ for a tree T in $T(n, k)$. For all trees in $T(n, k)$, we determined unique trees with the first and second largest Merrifield-Simmons index, respectively.

KEY WORDS: Merrifield-Simmons index, trees with k pendent vertices

1. Introduction

Let $G=(V(G), E(G))$ denote a graph whose set of vertices and set of edges are $V(G)$ and $E(G)$, respectively. For any $v \in V(G)$, we denote the neighbors of v as $N_{G}(v)$. By $n(G)$, we denote the number of vertices of G. All graphs considered here are both finite and simple. We denote, respectively, by S_{n} and P_{n} the star and path with n vertices.

For any given graph G, its Merrifield-Simmons index, simply denoted as $\sigma(G)$, is defined as the number of subsets of the vertex set, in which any two vertices are non-adjacent, i.e., in graph-theoretical terminology, the number of independent-vertex subsets of G, including the empty set. For example, for the cycle $C_{4}=v_{0} v_{1} v_{2} v_{3}$, the independent-vertex subsets of $V\left(C_{4}\right)$ of all size are as follows: $\emptyset,\left\{v_{0}\right\},\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{0}, v_{2}\right\},\left\{v_{1}, v_{3}\right\}$, and then $\sigma\left(C_{4}\right)=7$. As for the path $P_{n}, \sigma(G)$ is exactly equal to the Fibonacci number F_{n+2}. This is perhaps why some researchers call the Merrifield-Simmons index "Fibonacci number." The concept of a (molecular) graph is introduced in [13], and discussed later in [1]. The Merrifield-Simmons index for a molecular graph was extensively investigated in [10], where its chemical applications were demonstrated. In [6], Li et al. gave its other properties and applications. Wang and Hua [15] gave sharp lower and upper bounds for Merrifield-Simmons index among all unicycle graphs.

[^0]More recently, Yu et al. [16] determined the unique trees with the first greatest value of Merrifield-Simmons index among all trees with k pendent vertices. There have been many literature studying the Merrifield-Simmons index. For further details, see $[3-9,11,12,14,17]$ and the cited references therein.

By $T-u$ and $T-u v$, we denote, respectively, the graphs that arises from T by deleting the vertex $u \in V(T)$ and the edge $u v \in E(T)$. Likewise, $T+u v$ denotes the graph that arises from T by adding an edge $u v \notin E(T)$. Let $T(n, k)$ denote the set of trees of n vertices and with k pendent vertices. Let $T_{n_{1}, n_{2}, \ldots, n_{k}}$ be a tree in $T(n, k)$ obtained from a star S_{k+1} by attaching paths of orders $n_{1}, n_{2}, \ldots n_{k}$ to k pendent vertices of S_{k+1}. A caterpillar is a tree if deleting all its pendent vertices will reduce it to a path. By $S_{m, n}$, we denote a double star which is obtained by identifying one pendent vertex of S_{n+2} with the center of S_{m+1}.

Let $\left(G_{1}, v_{1}\right)$ and $\left(G_{2}, v_{2}\right)$ be two graphs rooted at v_{1} and v_{2}, respectively, then $G=\left(G_{1}, v_{1}\right) \bowtie\left(G_{1}, v_{2}\right)$ denote the graph obtained by identifying v_{1} with v_{2} as one common vertex.

Other notations and terminology not defined here will conform to those in [2].
Let F_{n} denote the n-th Fibonacci number, we have $F_{n}+F_{n+1}=F_{n+2}$ with initial conditions $F_{1}=F_{2}=1$.

In this paper, we also investigate the Merrifield-Simmons index for trees in $T(n, k)$. By presenting a new proof of Yu et al., results in [16], we determined the unique trees with the first greatest value of Merrifield-Simmons index among all trees in $T(n, k)$. Moreover, all trees in $T(n, k)$ with the second largest Merrifield-Simmons index are uniquely determined.

2. Some known results

We begin with several important lemmas from $[6,13]$ will be helpful to the proofs of our main results.

Lemma 1. For any graph G with any $v \in V(G)$, we have

$$
\sigma(G)=\sigma(G-v)+\sigma(G-[v])
$$

where $[v]=N_{G}(v) \bigcup\{v\}$.

Lemma 2. Let G be a graph with m components $G_{1}, G_{2}, \ldots G_{m}$. Then $\sigma(G)=$ $\prod_{i=1}^{m} \sigma\left(G_{i}\right)$.

Lemma 3. Let T be a tree. Then $F_{n+2} \leqslant \sigma(T) \leqslant 2^{n-1}+1$ and $\sigma(T)=F_{n+2}$ if and only if $T \cong P_{n}$ and $\sigma(T)=2^{n-1}+1$ if and only if $T \cong S_{n}$.

Lemma 4. Let $G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right)$ and $G_{2}=\left(V\left(G_{2}\right), E\left(G_{2}\right)\right)$ be two graphs. If $V\left(G_{1}\right)=V\left(G_{2}\right)$ and $E\left(G_{1}\right) \subset E\left(G_{2}\right)$, then $\sigma\left(G_{1}\right)>\sigma\left(G_{2}\right)$.

3. Trees in $T(n, k)$ with the first largest value of Merrifield-Simmons index

In this section, we investigate the first largest value of Merrifield-Simmons index for trees in $T(n, k)$. Before we introduce our main results, we need to state and prove the following lemma.

Lemma 5. Let G_{1} be a connected graph and T a tree of order n. Let $G=$ $\left(G_{1}, r_{i}\right) \bowtie\left(T, r_{i}\right)$, then we have $\sigma(G) \leqslant \sigma\left(\left(G_{1}, r_{i}\right) \bowtie\left(S_{n}, r_{i}\right)\right)$ with equality holds if and only if $T \cong S_{n}$. Moreover, r_{i} is the center of S_{n}.

Proof. It follows from lemma 1. that

$$
\begin{equation*}
\sigma(G)=\sigma\left(G-r_{i}\right)+\sigma\left(G-\left[r_{i}\right]\right) \tag{1}
\end{equation*}
$$

Let $N_{G_{1}}\left(r_{i}\right)=\left\{x_{1}, \ldots x_{p}\right\}$ and $N_{T}\left(r_{i}\right)=\left\{y_{1}, \ldots y_{q}\right\}$, where $p, q \geqslant 1$.
Note first from lemma 2. that

$$
\begin{equation*}
\sigma\left(G-r_{i}\right)=\sigma\left[\left(G_{1}-r_{i}\right) \bigcup\left(T-r_{i}\right)\right]=\sigma\left(G_{1}-r_{i}\right) \sigma\left(\bigcup_{i=1}^{q} T_{i}\right) \tag{2}
\end{equation*}
$$

where each T_{i} denote the subtree of $T-r_{i}$ containing y_{i} for $i=1, \ldots q$.
Note also from lemma 2. that

$$
\begin{align*}
\sigma\left(G-\left[r_{i}\right]\right) & =\sigma\left[\left(G_{1}-\left[r_{i}\right]\right) \bigcup\left(T-\left[r_{i}\right]\right)\right] \\
& =\sigma\left[\left(G_{1}-\left[r_{i}\right]\right)\right] \sigma\left[\left(T-\left[r_{i}\right]\right)\right] \\
= & \sigma\left(G_{1}-\left[r_{i}\right]\right) \sigma\left(\bigcup_{i=1}^{s} T_{j}\right) \tag{3}
\end{align*}
$$

where T_{j} denote the subtree of $T-\left[r_{i}\right]$.
Moreover, from lemma 1. it follows that

$$
\begin{align*}
\sigma\left(G_{1}-\left[r_{i}\right]\right)= & \sigma\left[\left(G_{1}-r_{i}-x_{1}-\cdots x_{p}\right)\right. \\
= & \sigma\left(G_{1}-r_{i}-x_{1}-\cdots x_{p-1}\right)-\sigma\left(G_{1}-r_{i}-x_{1}-\cdots x_{p-1}-\left[x_{p}\right]\right) \\
= & \cdots \\
= & \sigma\left(G_{1}-r_{i}\right)-\sigma\left(G_{1}-r_{i}-\left[x_{1}\right]\right)-\cdots-\sigma\left(G_{1}-r_{i}-x_{1}\right. \\
& \left.-\cdots x_{p-1}-\left[x_{p}\right]\right) \tag{4}
\end{align*}
$$

> Let $A=\sigma\left(\bigcup_{i=1}^{q} T_{i}\right)$ and $B=\sigma\left(\bigcup_{j=1}^{s} T_{j}\right)$. Combining (1)-(4) we obtain that $\sigma(G)=A \sigma\left(G_{1}-r_{i}\right)+B\left[\sigma\left(G_{1}-r_{i}\right)-\sigma\left(G_{1}-r_{i}-\left[x_{1}\right]\right)-\cdots-\sigma\left(G_{1}-r_{i}-x_{1}-\cdots x_{p-1}-\left[x_{p}\right]\right)\right]$
> $=(A+B) \sigma\left(G_{1}-r_{i}\right)-B\left[\sigma\left(G_{1}-r_{i}-\left[x_{1}\right]\right)+\cdots+\sigma\left(G_{1}-r_{i}-x_{1}-\cdots x_{p-1}-\left[x_{p}\right]\right)\right]$.

It is easy to see that $\sigma\left(G_{1}-r_{i}\right)>0$ and $\sigma\left(G_{1}-r_{i}-\left[x_{1}\right]\right)+\cdots+\sigma\left(G_{1}-r_{i}-\right.$ $\left.x_{1}-\cdots x_{p-1}-\left[x_{p}\right]\right)>0$. In order for $\sigma(T)$ to be large enough, we must have that $A+B$ is large enough while B is small enough. It follows that $A=(A+B)+(-B)$ is large enough.

It follows from lemmas 2. and 3. that

$$
\begin{equation*}
A=\sigma\left(\bigcup_{i=1}^{q} T_{i}\right)=\prod_{i=1}^{q} \sigma\left(T_{i}\right) \leqslant 2^{\sum_{i=1}^{q} n\left(T_{i}\right)}=2^{n-1} \tag{5}
\end{equation*}
$$

where $n\left(T_{i}\right)$ denotes the order of T_{i}.
It's not difficult to see that the equality in (5) holds if and only if $\bigcup_{i=1}^{q} T_{i}=$ $(n-1) P_{1}$. It implies that $T \cong S_{n}$ and r_{i} is the center of S_{n}. This completes the proof.

When $k=n-1$ or $k=2, T$ is a star or a path. We can easily determine its Merrifield-Simmons index, so we will assume that $3 \leqslant k \leqslant n-2$ in the following.

Colollary 6. For $3 \leqslant k \leqslant n-2$, let T be a tree in $T(n, k)$ such that $\sigma(T)$ is large enough, then T is a caterpillar with at least two branched vertices or $T \cong$ $T_{1,1, \ldots, 1, s, t}$, where $\min \{s, t\} \geqslant 1$ and $\max \{s, t\} \geqslant 2$.

Proof. Let T be a tree in $T(n, k)$ such that $\sigma(T)$ is large enough, where $3 \leqslant$ $k \leqslant n-2$.

Since $k \leqslant n-2$, then $T \nsubseteq S_{n}$. So there exists a diametrical path $P_{d+1}=$ $v_{0} v_{1} \ldots v_{d}$ in T with $d \geqslant 3$. Since $k \geqslant 3$, there exist at least one vertex v_{i} in P_{d+1} such that $d\left(v_{i}\right) \geqslant 3$ where $1 \leqslant i \leqslant d-1$.

Note that, for any tree T, we have

$$
\begin{equation*}
T=\left(T_{1}, r\right) \bowtie\left(T_{2}, r\right), \tag{6}
\end{equation*}
$$

where T_{1} and T_{2} denote trees of order n_{1} and n_{2}, respectively, and $n_{1}+n_{2}=n+1$.
Suppose there exists exactly one vertex, say v_{j} in P_{d+1} such that $d\left(v_{i}\right) \geqslant 3$ where $1 \leqslant j \leqslant d-1$. Then by (6) and lemma 5., we have $T\left(v_{j}\right) \cong S_{n\left(T\left(v_{j}\right)\right) \text {, }}$ where $T\left(v_{j}\right)$ denotes the subtree containing v_{j} of $T-\left\{v_{j-1} v_{j}, v_{j} v_{j+1}\right\}$. Thus, $T \cong T_{1,1, \ldots, 1, s, t}$.

So, we may assume that there exist at least two vertices, say v_{i} and v_{j} in T such that $d\left(v_{i}\right) \geqslant 3$ and $d\left(v_{j}\right) \geqslant 3$. Let $T=\left(T_{1}, r\right) \bowtie\left(T_{2}, r\right)$. Assume that T_{1} denote the subtree containing v_{j} of $T-\left\{v_{j-1} v_{j}, v_{j} v_{j+1}\right\}$. By lemma 5., $T_{1} \cong$ $S_{n\left(T\left(v_{j}\right)\right)}$. Also, we have $T_{2} \nsubseteq S_{n+1-n\left(T\left(v_{j}\right)\right)}$ for otherwise $T \cong S_{n}$, contradicting $k \leqslant n-2$. Similarly, we have $T\left(v_{i}\right) \cong S_{n\left(T\left(v_{i}\right)\right)}$. Consequently, T is a caterpillar with at least two branched vertices.

Therefore, the proof is complete.
If T is a tree in $T(n, k)$ such that $\sigma(T)$ is large enough, then we call it a maximal tree.

Lemma 7. Let T be a tree in $T(n, k)$ with $3 \leqslant k \leqslant n-2$ such that $\sigma(T)$ is large enough, then $T \cong T_{1,1, \ldots, 1, s, t}$, where $\min \{s, t\} \geqslant 1$ and $\max \{s, t\} \geqslant 2$.

Proof. Let T be a maximal tree in $T(n, k)$ with $3 \leqslant k \leqslant n-2$. From corollary 6., we have $T \cong T_{1,1, \ldots, 1, s, t}$ or T is a caterpillar having at least two branched vertices.

In the following, we will show that T can not be a caterpillar with at least two branched vertices.

Suppose, to the contrary, that T is a caterpillar with at least two branched vertices. Let $P_{d+1}=v_{0} v_{1} \ldots v_{d}$ be a diametrical path in T. For $1 \leqslant i \leqslant d-1$, let n_{i} denote the number of neighbors of v_{i} lying outside the path P_{d+1}. We will complete the proof by distinguishing the following two cases.

Case 1. There exists some $v_{j}(1 \leqslant i \leqslant d-1)$ such that $n_{j} \geqslant 2$.
Since T has at least two branched vertices, let v_{i} be another branched vertex. Let $N\left(v_{i}\right)-\left\{v_{i-1}, v_{i+1}\right\}=\left\{x_{1}, \ldots, x_{n_{i}}\right\}$ and $N\left(v_{j}\right)-\left\{v_{j-1}, v_{j+1}\right\}=$ $\left\{y_{1}, \ldots, y_{n_{j}}\right\}$.

Let T^{\prime} be obtained as follows.

$$
T^{\prime}=T-v_{i} x_{1}-\cdots-v_{i} x_{n_{i}}+v_{j} x_{1}+\cdots+v_{j} x_{n_{i}}
$$

We will show that $\sigma\left(T^{\prime}\right)>\sigma(T)$ by induction on the order of T. Assume that the result holds for any maximal tree T in $T(n, k)$ of order less than n.

Now, let T be a maximal tree of order n in $T(n, k)$.
From lemma 1., we have

$$
\begin{equation*}
\sigma\left(T^{\prime}\right)=\sigma\left(T^{\prime}-y_{1}\right)+\sigma\left(T^{\prime}-\left[y_{1}\right]\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma(T)=\sigma\left(T-y_{1}\right)+\sigma\left(T-\left[y_{1}\right]\right) \tag{8}
\end{equation*}
$$

From induction hypothesis it follows that

$$
\begin{equation*}
\sigma\left(T^{\prime}-y_{1}\right)>\sigma\left(T-y_{1}\right) \tag{9}
\end{equation*}
$$

Let T_{1} and T_{2} denote the subtrees of $T^{\prime}-\left[y_{1}\right]$ containing v_{j-1} and v_{j+1}, respectively. Without loss of generality we may suppose that $v_{i} \in T_{1}$.

From lemma 2, we obtain

$$
\begin{gather*}
\sigma\left(T^{\prime}-\left[y_{1}\right]\right)=\sigma\left[T_{1} \bigcup T_{2} \bigcup\left(n_{i}+n_{j}-1\right) P_{1}\right] \\
=2^{n_{j}-1} \sigma\left(T_{1} \bigcup n_{i} P_{1}\right) \sigma\left(T_{2}\right) \tag{10}
\end{gather*}
$$

and

$$
\begin{equation*}
\sigma\left(T-\left[y_{1}\right]\right)=2^{n_{j}-1} \sigma\left(T_{3}\right) \sigma\left(T_{2}\right) \tag{11}
\end{equation*}
$$

where T_{3} denotes the subtree of $T-\left[y_{1}\right]$ containing v_{j-1}. Then $v_{i} \in T_{3}$.
Note that $V\left(T_{1} \bigcup n_{i} P_{1}\right)=V\left(T_{3}\right)$ and $E\left(T_{1} \bigcup n_{i} P_{1}\right)=E\left(T_{3}\right)-\left\{v_{i} x_{1}, \ldots\right.$ $\left.v_{i} x_{n_{i}}\right\} \subset E\left(T_{3}\right)$. So $\sigma\left(T_{1} \bigcup n_{i} P_{1}\right)>\sigma\left(T_{3}\right)$ by lemma 4.

Combining (7)-(9) with (10)-(11), we get $\sigma\left(T^{\prime}\right)>\sigma(T)$. So in this case, we have shown that $\sigma\left(T^{\prime}\right)>\sigma(T)$ for any maximal tree T in $T(n, k)$ by the principle of mathematical induction. But then it contradicts the maximality of $\sigma(T)$.

Case 2. For each $1 \leqslant i \leqslant d-1, n_{i}=1$.
Let v_{j} be a vertex with $n_{j}=1$. we obtain T^{\prime} by deleting all the pendent edges of T incident with each $v_{i}(1 \leqslant i \leqslant d-1$ and $i \neq j)$ and attaching all the deleted edges to the vertex v_{j}.

Let $S=\left\{v_{i} \mid n_{i}=1,1 \leqslant i \leqslant d-1\right\}$. If $|S|=2$, we can easily check that $\sigma\left(T^{\prime}\right)>\sigma(T)$, a contradiction to the choice of T.

Suppose $|S| \geqslant 3$. We will show that $\sigma\left(T^{\prime}\right)>\sigma(T)$ by induction on the order of T in the following. Assume that the result holds for maximal trees T in $T(n, k)$ of order less than n.

Now, let T be a maximal tree of order n in $T(n, k)$. Let $N\left(v_{j}\right)-$ $\left\{v_{j-1}, v_{j+1}\right\}=\left\{y_{1}\right\}$, we have

$$
\begin{equation*}
\sigma\left(T^{\prime}\right)=\sigma\left(T^{\prime}-y_{1}\right)+\sigma\left(T^{\prime}-\left[y_{1}\right]\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma(T)=\sigma\left(T-y_{1}\right)+\sigma\left(T-\left[y_{1}\right]\right) \tag{13}
\end{equation*}
$$

By induction assumption, we get

$$
\begin{equation*}
\sigma\left(T^{\prime}-y_{1}\right)>\sigma\left(T-y_{1}\right) \tag{14}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\sigma\left(T^{\prime}-\left[y_{1}\right]\right)=\sigma\left[P_{j} \bigcup P_{d-j} \bigcup(|S|-1) P_{1}\right] \tag{15}
\end{equation*}
$$

One can easily see that $\left.V\left(P_{j} \bigcup P_{d-j} \bigcup(|S|-1) P_{1}\right]\right)=V\left(T-\left[y_{1}\right]\right)$ and $\left.E\left(P_{j} \bigcup P_{d-j} \bigcup(|S|-1) P_{1}\right]\right) \subset E\left(T-\left[y_{1}\right]\right)$. So

$$
\begin{equation*}
\sigma\left(T^{\prime}-\left[y_{1}\right]\right)=\sigma\left(P_{j} \bigcup P_{d-j} \bigcup(|S|-1) P_{1}\right)>\sigma\left(T-\left[y_{1}\right]\right) \tag{16}
\end{equation*}
$$

by lemma 4.

Combining (12) and (13) with (14) and (15), we get $\sigma\left(T^{\prime}\right)>\sigma(T)$. Thus, by the principle of mathematical induction, we know that $\sigma\left(T^{\prime}\right)>\sigma(T)$ for any maximal tree T in $T(n, k)$ in this case. It is a contradiction to the choice of T.

Therefore, the desired result follows from the proofs of cases 1 and 2.
In the following, we will determine the unique trees in $T(n, k)$ having the first largest Merrifield-Simmons index.

Theorem 8. Let T be a tree in $T(n, k)$ with $3 \leqslant k \leqslant n-2$, then $\sigma(T) \leqslant$ $\sigma\left(T_{1,1, \ldots 1,(n-k)}\right)$ with equality holds if and only if $T \cong T_{1,1, \ldots 1,(n-k)}$.

Proof. Suppose T is a tree in $T(n, k)$ with $\sigma(T)$ taking the largest value. It follows from lemma 7 that $T \cong T_{1,1, \ldots, 1, s, t}$, where $\min \{s, t\} \geqslant 1$ and $\max \{s, t\} \geqslant 2$. without loss of generality, we may assume that $t \geqslant s$ hereinafter.

In the following, we will prove that $T \cong T_{1,1, \ldots 1,(n-k)}$.
Suppose that $t=2$. If $s=1$, then $T \cong T_{1,1, \ldots 1,2}$ and the result holds. So, we may assume that $s=2$.

Let u be the unique branched vertex in T. Let $u v_{1}^{s} v_{2}^{s}$ and $u v_{1}^{t} v_{2}^{t}$ denote the path with respect to s and t, respectively.

Let T^{\prime} be obtained as follows

$$
T^{\prime}=T-v_{1}^{s} v_{2}^{s}+v_{2}^{s} v_{2}^{t}
$$

Let t be the number of pendent vertices in $N(u)$. Since $T \cong T_{1,1, \cdots 1, s, t}$ and $T \not \equiv S_{n}$, then $t \leqslant k-1$.

One can easily get that

$$
\sigma\left(T^{\prime}\right)=\sigma\left(T^{\prime}-u\right)+\sigma\left(T^{\prime}-[u]\right)=5.2^{t+1} 3^{k-t-1}+3.2^{k-t-2}
$$

and

$$
\sigma(T)=\sigma(T-u)+\sigma(T-[u])=2^{t} 3^{k-t}+2^{k-t}
$$

Then $\sigma\left(T^{\prime}\right)-\sigma(T)=7.2^{t} 3^{k-t-1}-2^{k-t-2}>0$, a contradiction to the choice of T.
So we may assume that $t \geqslant 3$. By $u v_{1} \ldots v_{t}$, we denote the path with respect to t. We will show that $\sigma(T) \leqslant \sigma\left(T_{1,1, \ldots 1,(k-1)}\right)$ by induction on the order of T.

Assume that the result holds for all trees T in $T(n, k)$ with small values of n.
Since $t \geqslant 3$, then $T-v_{t} \in T(n-1, k)$ and $T-\left[v_{t}\right] \in T(n-2, k)$. Hence by inductive hypothesis, we have

$$
\sigma\left(T-v_{t}\right) \leqslant \sigma\left(T_{1,1, \ldots 1,(n-k-1)}\right)
$$

with equality holds if and only if $T \cong T_{1,1, \ldots 1,(n-k-1)}$ and

$$
\sigma\left(T-\left[v_{t}\right]\right) \leqslant \sigma\left(T_{1,1, \ldots .1,(n-k-2)}\right)
$$

with equality holds if and only if $T \cong T_{1,1, \ldots 1,(n-k-2)}$.

Therefore

$$
\begin{aligned}
\sigma(T) & =\sigma\left(T-v_{t}\right)+\sigma\left(T-\left[v_{t}\right]\right) \\
& \leqslant \sigma\left(T_{1,1, \ldots 1,(n-k-1)}\right)+\sigma\left(T_{1,1, \ldots 1,(n-k-2)}\right) \\
& =\sigma\left(T_{1,1, \ldots 1,(n-k)}\right)
\end{aligned}
$$

It is not difficult to see that the above equality holds if and only if $T-v_{t} \cong$ $T_{1,1, \ldots 1,(n-k-1)}$ and $T-\left[v_{t}\right] \cong T_{1,1, \ldots 1,(n-k-2)}$, which implies that $T \cong T_{1,1, \ldots 1,(n-k)}$. This completes the proof.

3. Trees in $T(n, k)$ with the second largest value of Merrifield-Simmons index

We begin with an important lemma which is crucial to the proofs of our main results in this section.

Lemma 9. For $2 \leqslant i \leqslant\left\lfloor\frac{n}{2}\right\rfloor, i \neq 3$ and $n \geqslant 6$, we have $F_{3} F_{n+1}>F_{5} F_{n-1}>$ $F_{i+2} F_{n+2-i}$.

Proof. It is easy to prove that $F_{3} F_{n+1}>F_{5} F_{n-1}$ and $F_{5} F_{n-1}>F_{4} F_{n}$. So we need only to prove that $F_{5} F_{n-1}>F_{i+2} F_{n-i+2}$ for $4 \leqslant i \leqslant\left\lfloor\frac{n}{2}\right\rfloor$. Note that

$$
\begin{aligned}
F_{i+2} F_{n-i+2}-F_{i+1} F_{n-i+3} & =\left(F_{i+1}+F_{i}\right) F_{n-i+2}-F_{i+1}\left(F_{n-i+2}+F_{n-i+1}\right) \\
& =-\left(F_{i+1} F_{n-i+1}-F_{i} F_{n-i+2}\right) \\
& =\left(F_{i}+F_{i-1}\right) F_{n-i+2}-F_{i}\left(F_{n-i+1}+F_{n-i}\right) \\
& =F_{i} F_{n-i}-F_{i-1} F_{n-i+1} \\
& =\cdots \\
& =(-1)^{i}\left(F_{2} F_{n-2 i+2}-F_{1} F_{n-2 i+3}\right) \\
& =(-1)^{i+1} F_{n-2 i+1} .
\end{aligned}
$$

So, for $4 \leqslant i \leqslant\left\lfloor\frac{n}{2}\right\rfloor$, we have $F_{i+2} F_{n-i+2}-F_{5} F_{n-1}=\left(F_{n-9}-F_{n-7}\right)+\left(F_{n-13}-\right.$ $\left.F_{n-11}\right)+\cdots<0$, that is $F_{5} F_{n-1}>F_{i+2} F_{n-i+2}$. This completes the proof.

The proof of the following lemma is trivial, so we omit here.
Lemma 10. Let T be a tree in $T(n, k)$ with $3 \leqslant k \leqslant n-2$. If $T \not \approx T_{1,1, \ldots 1,(n-k) \text {, }}$ then $\sigma(T) \leqslant \sigma\left(T_{1,1, \ldots 1, s, t}\right)$ with equality holds if and only if $T \cong T_{1,1, \ldots 1, s, t}$, where $t \geqslant s \geqslant 2$ and $s+t=n-k+1$.

Theorem 11. Let T be a tree in $T(n, k)$ with $3 \leqslant k \leqslant n-5$. If $T \not \approx$ $T_{1,1, \ldots 1,(n-k)}$, then $\sigma(T) \leqslant \sigma\left(T_{1,1, \ldots 1,3,(n-k-2)}\right)$ with equality holds if and only if $T \cong T_{1,1, \ldots 1,3,(n-k-2)}$.

Proof. Let T be a tree in $T(n, k)$ with $3 \leqslant k \leqslant n-5$ such that $T \not \approx T_{1,1, \ldots 1,(n-k)}$. By lemma 10, $\sigma(T) \leqslant \sigma\left(T_{1,1, \ldots 1, s, t}\right)$ where $t \geqslant s \geqslant 2$ and $s+t=n-k+1$. Moreover, the above equality holds if and only if $T \cong T_{1,1, \ldots 1, s, t}$. So it is sufficient to prove that $\sigma\left(T_{1,1, \ldots 1, s, t}\right) \leqslant \sigma\left(T_{1,1, \ldots 1,3,(n-k-2)}\right)$ with equality holds if and only if $T_{1,1, \ldots 1, s, t} \cong T_{1,1, \ldots 1,3,(n-k-2)}$.

Let $T \cong T_{1,1, \ldots s, t}$ and u be the unique branched vertex in T. Since $k \geqslant 3$, there must exist one pendent vertex, say w in T, which is adjacent to u. Applying induction on n and k.

It follows from lemma 1. that

$$
\begin{aligned}
\sigma(T) & =\sigma(T-w)+\sigma(T-[w]) \\
& =\sigma\left(T^{\prime}\right)+2^{k-3} \sigma\left(P_{s}\right) \sigma\left(P_{t}\right) \\
& =\sigma\left(T^{\prime}\right)+2^{k-3} F_{s+2} F_{t+2},
\end{aligned}
$$

where $T^{\prime}=T-w \in T(n-1, k-1)$.
By induction assumption, we have $\sigma(T-w)=\sigma\left(T^{\prime}\right) \leqslant \sigma\left(T_{1,1, \ldots 1,3,(n-k-2)}\right.$ w^{\prime}), where w^{\prime} is one pendent vertex adjacent to the unique branched vertex u^{\prime} in $T_{1,1, \ldots 1,3,(n-k-2)}$. Also, it follows from lemma 9. that $F_{s+2} F_{t+2} \leqslant F_{5} F_{s+t-1}$ for all $2 \leqslant s \leqslant\left\lfloor\frac{s+t+4}{2}\right\rfloor$ with equality holds if and only if $s=3$. since $T \not \nexists T_{1,1, \ldots 1,(n-k)}$, then $4 \leqslant s+2 \leqslant t+2$ and $\sigma(T-[w])=2^{k-3} F_{s+2} F_{t+2} \leqslant 2^{k-3} F_{5} F_{s+t-1}=$ $\sigma\left(T_{1,1, \ldots 1,3,(n-k-2)}-\left[w^{\prime}\right]\right)$, where w^{\prime} is given as above. So

$$
\begin{aligned}
\sigma(T) & =\sigma(T-w)+\sigma(T-[w]) \\
& \leqslant \sigma\left(T_{1,1, \ldots 1,3,(n-k-2)}-w^{\prime}\right)+\sigma\left(T_{1,1, \ldots 1,3,(n-k-2)}-\left[w^{\prime}\right]\right) \\
& =\sigma\left(T_{1,1, \ldots 1,3,(n-k-2)}\right)
\end{aligned}
$$

Moreover, the above equality holds if and only if $T-w \cong T_{1,1, \ldots 1,3,(n-k-2)}-w^{\prime}$ and $T-[w] \cong T_{1,1, \ldots 1,3,(n-k-2)}-\left[w^{\prime}\right]$, which leads to that $T \cong T_{1,1, \ldots 1,3,(n-k-2)}$. This completes the proof.

When $n=k-4$, the next theorem determined the unique tree in $T(n, n-4)$ which attains the second largest value of Merrifield-Simmons index.

Theorem 12. Let T be a tree in $T(n, n-4)$ and $T \not \approx T_{1,1, \ldots 1,4}$, then $\sigma(T) \leqslant$ $\sigma\left(T_{1,1, \ldots 1,2,3}\right)$ with equality if and only if $T \cong T_{1,1, \ldots 1,2,3}$.

Proof. For any tree T in $T(n, n-4)$. If $T \not \equiv T_{1,1, \ldots 1,1,4}$, then by lemma 10., we have $\sigma(T) \leqslant \sigma\left(T_{1,1, \ldots 1, s, t}\right)$ where $t \geqslant s \geqslant 2$. Since the tree $T \cong T_{1,1, \ldots 1,2,3}$ is the unique tree of the form $T_{1,1, \ldots 1, s, t}$ with $t \geqslant s \geqslant 2$, then the desired result follows.

When $n=k-3$, one can easily get the following.
Theorem 13. Let T be a tree in $T(n, n-3)$ and $T \nexists T_{1,1, \ldots 1,1,3}$, then $\sigma(T) \leqslant$ $\sigma\left(T_{1,1, \ldots 1,2,2}\right)$ with equality holds if and only if $T \cong T_{1,1, \ldots 1,2,2}$.

The proof of this theorem is similar to that of theorem 12., so we omit here.
In the following, we determine the unique tree with the second largest Mer-rifiled-Simmons index among all trees in $T(n, n-2)$.
Theorem 14. Let T be a tree in $T(n, n-2)$. If $T \not \nexists T_{1,1, \ldots 1,2}$, then $\sigma(T) \leqslant$ $\sigma\left(S_{2, n-4}\right)$ with equality holds if and only if $T \cong S_{2, n-4}$.

Proof. For any tree in $T(n, n-2)$, we must have $T \cong S_{a, b}(a \geqslant 1$ and $b \geqslant 1)$.
Since $T \not \approx T_{1,1, \ldots 1,2}$ and $T_{1,1, \ldots 1,2} \cong S_{1, n-3}$, then we may assume that $T \cong S_{a, b}$ with $b \geqslant a \geqslant 2$. Noting that $\sigma\left(S_{a, b}\right)=2^{a}\left(2^{b}+1\right)+2^{b}$. So $\sigma\left(S_{a-1, b+1}\right)-\sigma\left(S_{a, b}\right)=$ $\left(2^{a-1}+2^{b+1}\right)-\left(2^{a}+2^{b}\right)=2^{b}-2^{a-1}>0$. Then we have $\sigma\left(S_{a, b}\right) \leqslant \sigma\left(S_{2, n-4}\right)$ for all trees T in $T(n, n-2)$ and $T \nexists T_{1,1, \ldots 1,2}$ with equality holds if and only if $T \cong S_{2, n-4}$.

References

[1] A. F. Alameddine, Bounds on the Fibonacci number of a maximal outerplanar graph, Fibonacci Q. 36(3) (1998) 206-210.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).
[3] I. Gutman, Fragmentation formulas for the number of Kekulé structure, Hosoya and Merrifield-Simmons indices and related graph invariants, Coll. Sci. Pap. Fac. Sci. Kragujevac 11 (1990) 11-18.
[4] I. Gutman and N. Kolaković, Hosoya index of the second of molecules containing a polyacene fragment, Bull. Acad. Serbe Sci. Arts (CI. Math. Natur.) 102 (1990) 39-46.
[5] I. Gutman, Independent vertex sets in some compound graphs, Publ. Inst. Math. (Beograd) 52 (1992) 5-9.
[6] X. Li, Z. Li and L.Wang, The inverse problems for some topological indices in combinatorial chemistry, J. Comput. Biol. 10(1) (2003) 47-55.
[7] X. Li, H. Zhao and I. Gutman, On the Merrifield-Simmons index of trees, MATCH Commun. Math. Comput. Chem. 54(2) (2005) 389-402.
[8] V. Linek, Bipartite graphs can have any number of independent sets, Discr. Math. 76 (1989) 131-136.
[9] X. Li, On a conjecture of Merrifield and Simmons, Australasian J. Comb. 14 (1996) 15-20.
[10] R. E. Merrifield and H. E. Simmons, Topological Methods in Chemistry (Wiley, New York, 1989).
[11] R. E. Merrifield and H. E. Simmons, Enumeration of structure-sensitive graphical subsets: Theory, Proc. Natl. Acad. Sci. USA 78 (1981) 692-695.
[12] R. E. Merrifield and H. E. Simmons, Enumeration of structure-sensitive graphical subsets: Theory, Proc. Natl. Acad.Sci.USA 78 (1981) 1329-1332.
[13] H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Q. 20(1) (1982) 16-21.
[14] Y. Wang, X. Li and I. Gutman, More examples and couterexamples for a conjecture of Merrifield-Simmons, Publications de L'Institut Math. NS 69(83) (2001) 41-50.
[15] H. Wang and H. Hua, On Unicycle graphs with Extremal Merrifield-Simmons index, Accepted by J. Math. Chem.
[16] A. Yu et al., The Merrifield-Simmons indices and Hosoya indices of trees with k pendent vertices. Accepted by J. Math. Chem.
[17] H. Zhao and X. Li, On the Fibonacci Numbers of Trees, Fibonacci Q. 44(1) (2006) 32-38.

[^0]: *Corresponding author.

