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The Merrifield–Simmons index σ(G) of a graph G is defined as the number of sub-
sets of the vertex set, in which any two vertices are non-adjacent, i.e., the number of
independent-vertex sets of G. By T (n, k) we denote the set of trees with n vertices and
with k pendent vertices. In this paper, we investigate the Merrifield–Simmons index
σ(T ) for a tree T in T (n, k). For all trees in T (n, k), we determined unique trees with
the first and second largest Merrifield–Simmons index, respectively.

KEY WORDS: Merrifield–Simmons index, trees with k pendent vertices

1. Introduction

Let G = (V (G), E(G)) denote a graph whose set of vertices and set of
edges are V (G) and E(G), respectively. For any v ∈ V (G), we denote the neigh-
bors of v as NG(v). By n(G), we denote the number of vertices of G. All graphs
considered here are both finite and simple.We denote, respectively, by Sn and Pn
the star and path with n vertices.

For any given graph G, its Merrifield–Simmons index, simply denoted as
σ(G), is defined as the number of subsets of the vertex set, in which any two
vertices are non-adjacent, i.e., in graph-theoretical terminology, the number of
independent-vertex subsets of G, including the empty set. For example, for the
cycle C4 = v0v1v2v3, the independent-vertex subsets of V (C4) of all size are as
follows: ∅, {v0}, {v1}, {v2}, {v3}, {v0, v2}, {v1, v3}, and then σ(C4) = 7. As for the
path Pn, σ(G) is exactly equal to the Fibonacci number Fn+2. This is perhaps
why some researchers call the Merrifield–Simmons index “Fibonacci number.”
The concept of a (molecular) graph is introduced in [13], and discussed later in
[1]. The Merrifield–Simmons index for a molecular graph was extensively investi-
gated in [10], where its chemical applications were demonstrated. In [6], Li et al.
gave its other properties and applications. Wang and Hua [15] gave sharp lower
and upper bounds for Merrifield–Simmons index among all unicycle graphs.
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More recently, Yu et al. [16] determined the unique trees with the first great-
est value of Merrifield–Simmons index among all trees with k pendent vertices.
There have been many literature studying the Merrifield–Simmons index. For
further details, see [3–9, 11, 12, 14, 17] and the cited references therein.

By T − u and T − uv, we denote, respectively, the graphs that arises from
T by deleting the vertex u ∈ V (T ) and the edge uv ∈ E(T ). Likewise, T + uv

denotes the graph that arises from T by adding an edge uv �∈ E(T ). Let T (n, k)

denote the set of trees of n vertices and with k pendent vertices. Let Tn1,n2,...,nk

be a tree in T (n, k) obtained from a star Sk+1 by attaching paths of orders
n1, n2, . . . nk to k pendent vertices of Sk+1. A caterpillar is a tree if deleting all
its pendent vertices will reduce it to a path. By Sm,n, we denote a double star
which is obtained by identifying one pendent vertex of Sn+2 with the center of
Sm+1.

Let (G1, v1) and (G2, v2) be two graphs rooted at v1 and v2, respectively,
then G = (G1, v1) �� (G1, v2) denote the graph obtained by identifying v1 with
v2 as one common vertex.

Other notations and terminology not defined here will conform to those in [2].
Let Fn denote the n − th Fibonacci number, we have Fn + Fn+1 = Fn+2 with

initial conditions F1 = F2 = 1.
In this paper, we also investigate the Merrifield–Simmons index for trees

in T (n, k). By presenting a new proof of Yu et al., results in [16], we deter-
mined the unique trees with the first greatest value of Merrifield–Simmons index
among all trees in T (n, k). Moreover, all trees in T (n, k) with the second largest
Merrifield–Simmons index are uniquely determined.

2. Some known results

We begin with several important lemmas from [6,13] will be helpful to the
proofs of our main results.

Lemma 1. For any graph G with any v ∈ V (G), we have

σ(G) = σ(G − v) + σ(G − [v]),

where [v] = NG(v)
⋃{v}.

Lemma 2. Let G be a graph with m components G1, G2, . . . Gm . Then σ(G) =
m∏

i=1
σ(Gi ).

Lemma 3. Let T be a tree. Then Fn+2 � σ(T ) � 2n−1 + 1 and σ(T ) = Fn+2 if
and only if T ∼= Pn and σ(T ) = 2n−1 + 1 if and only if T ∼= Sn.
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Lemma 4. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be two graphs.
If V (G1) = V (G2) and E(G1) ⊂ E(G2), then σ(G1) > σ(G2).

3. Trees in T (n, k) with the first largest value of Merrifield–Simmons index

In this section, we investigate the first largest value of Merrifield–Simmons
index for trees in T (n, k). Before we introduce our main results, we need to state
and prove the following lemma.

Lemma 5. Let G1 be a connected graph and T a tree of order n. Let G =
(G1, ri ) �� (T, ri ), then we have σ(G) � σ((G1, ri ) �� (Sn, ri )) with equality holds
if and only if T ∼= Sn. Moreover, ri is the center of Sn.

Proof. It follows from lemma 1. that

σ(G) = σ(G − ri ) + σ(G − [ri ]). (1)

Let NG1(ri ) = {x1, . . . x p} and NT (ri ) = {y1, . . . yq}, where p, q � 1.
Note first from lemma 2. that

σ(G − ri ) = σ [(G1 − ri )
⋃

(T − ri )] = σ(G1 − ri )σ

( q⋃

i=1

Ti

)

. (2)

where each Ti denote the subtree of T − ri containing yi for i = 1, . . . q.

Note also from lemma 2. that

σ(G − [ri ]) = σ
[
(G1 − [ri ])

⋃
(T − [ri ])

]

= σ [(G1 − [ri ])]σ [(T − [ri ])]

= σ(G1 − [ri ])σ
(

s⋃

i=1

Tj

)

, (3)

where Tj denote the subtree of T − [ri ].
Moreover, from lemma 1. it follows that

σ(G1 − [ri ]) = σ [(G1 − ri − x1 − · · · x p)

= σ(G1 − ri − x1 − · · · x p−1) − σ(G1 − ri − x1 − · · · x p−1 − [x p])
= · · ·
= σ(G1 − ri ) − σ(G1 − ri − [x1]) − · · · − σ(G1 − ri − x1

− · · · x p−1 − [x p]) (4)
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Let A = σ

(
q⋃

i=1
Ti

)

and B = σ

(
s⋃

j=1
Tj

)

. Combining (1)–(4) we obtain that

σ(G) = Aσ(G1 −ri )+ B[σ(G1 −ri )−σ(G1 −ri −[x1])−···−σ(G1 −ri −x1 −···x p−1 −[x p])]
= (A+ B)σ (G1 −ri )− B[σ(G1 −ri −[x1])+···+σ(G1 −ri −x1 −···x p−1 −[x p])].

It is easy to see that σ(G1 −ri ) > 0 and σ(G1 −ri −[x1])+· · ·+σ(G1 −ri −
x1−· · · x p−1−[x p]) > 0. In order for σ(T ) to be large enough, we must have that
A+B is large enough while B is small enough. It follows that A = (A+B)+(−B)

is large enough.
It follows from lemmas 2. and 3. that

A = σ

( q⋃

i=1

Ti

)

=
q∏

i=1

σ(Ti ) � 2

q∑

i=1
n(Ti ) = 2n−1, (5)

where n(Ti ) denotes the order of Ti .

It’s not difficult to see that the equality in (5) holds if and only if
q⋃

i=1
Ti =

(n − 1)P1. It implies that T ∼= Sn and ri is the center of Sn. This completes the
proof.

When k = n −1 or k = 2, T is a star or a path. We can easily determine its
Merrifield–Simmons index, so we will assume that 3 � k � n−2 in the following.

Colollary 6. For 3 � k � n − 2, let T be a tree in T (n, k) such that σ(T ) is
large enough, then T is a caterpillar with at least two branched vertices or T ∼=
T1,1,...,1,s,t , where min{s, t} � 1 and max{s, t} � 2.

Proof. Let T be a tree in T (n, k) such that σ(T ) is large enough, where 3 �
k � n − 2.

Since k � n − 2, then T � Sn. So there exists a diametrical path Pd+1 =
v0v1 . . . vd in T with d � 3. Since k � 3, there exist at least one vertex vi in
Pd+1 such that d(vi ) � 3 where 1 � i � d − 1.

Note that, for any tree T , we have

T = (T1, r) �� (T2, r), (6)

where T1 and T2 denote trees of order n1 and n2, respectively, and n1+n2 = n+1.
Suppose there exists exactly one vertex, say v j in Pd+1 such that d(vi ) � 3

where 1 � j � d − 1. Then by (6) and lemma 5., we have T (v j ) ∼= Sn(T (v j )),
where T (v j ) denotes the subtree containing v j of T − {v j−1v j , v jv j+1}. Thus,
T ∼= T1,1,...,1,s,t .
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So, we may assume that there exist at least two vertices, say vi and v j in T
such that d(vi ) � 3 and d(v j ) � 3. Let T = (T1, r) �� (T2, r). Assume that T1
denote the subtree containing v j of T − {v j−1v j , v jv j+1}. By lemma 5. , T1 ∼=
Sn(T (v j )). Also, we have T2 � Sn+1−n(T (v j )) for otherwise T ∼= Sn, contradicting
k � n − 2. Similarly, we have T (vi ) ∼= Sn(T (vi )). Consequently, T is a caterpillar
with at least two branched vertices.

Therefore, the proof is complete.

If T is a tree in T (n, k) such that σ(T ) is large enough, then we call it a
maximal tree.

Lemma 7. Let T be a tree in T (n, k) with 3 � k � n − 2 such that σ(T ) is large
enough, then T ∼= T1,1,...,1,s,t , where min{s, t} � 1 and max{s, t} � 2.

Proof. Let T be a maximal tree in T (n, k) with 3 � k � n − 2. From corollary
6., we have T ∼= T1,1,...,1,s,t or T is a caterpillar having at least two branched
vertices.

In the following, we will show that T can not be a caterpillar with at least
two branched vertices.

Suppose, to the contrary, that T is a caterpillar with at least two branched
vertices. Let Pd+1 = v0v1 . . . vd be a diametrical path in T . For 1 � i � d − 1,
let ni denote the number of neighbors of vi lying outside the path Pd+1. We will
complete the proof by distinguishing the following two cases.

Case 1. There exists some v j (1 � i � d − 1) such that n j � 2.
Since T has at least two branched vertices, let vi be another branched

vertex. Let N (vi )−{vi−1, vi+1} = {x1, . . . , xni } and N (v j )−{v j−1, v j+1} =
{y1, . . . , yn j }.

Let T
′

be obtained as follows.

T
′ = T − vi x1 − · · · − vi xni + v j x1 + · · · + v j xni .

We will show that σ(T
′
) > σ(T ) by induction on the order of T . Assume

that the result holds for any maximal tree T in T (n, k) of order less than n.
Now, let T be a maximal tree of order n in T (n, k).
From lemma 1., we have

σ(T
′
) = σ(T

′ − y1) + σ(T
′ − [y1]) (7)

and
σ(T ) = σ(T − y1) + σ(T − [y1]). (8)

From induction hypothesis it follows that

σ(T
′ − y1) > σ(T − y1). (9)
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Let T1 and T2 denote the subtrees of T
′ − [y1] containing v j−1 and v j+1,

respectively. Without loss of generality we may suppose that vi ∈ T1.
From lemma 2, we obtain

σ(T
′ − [y1]) = σ

[
T1

⋃
T2

⋃
(ni + n j − 1)P1

]

= 2n j −1σ
(

T1

⋃
ni P1

)
σ(T2) (10)

and
σ(T − [y1]) = 2n j −1σ(T3)σ (T2), (11)

where T3 denotes the subtree of T − [y1] containing v j−1. Then vi ∈ T3.
Note that V (T1

⋃
ni P1) = V (T3) and E(T1

⋃
ni P1) = E(T3) − {vi x1, . . .

vi xni } ⊂ E(T3). So σ(T1
⋃

ni P1) > σ(T3) by lemma 4.
Combining (7)–(9) with (10)–(11), we get σ(T

′
) > σ(T ). So in this case, we

have shown that σ(T
′
) > σ(T ) for any maximal tree T in T (n, k) by the princi-

ple of mathematical induction. But then it contradicts the maximality of σ(T ).

Case 2. For each 1 � i � d − 1, ni = 1.
Let v j be a vertex with n j = 1. we obtain T

′
by deleting all the pendent

edges of T incident with each vi (1 � i � d − 1 and i �= j) and attaching all the
deleted edges to the vertex v j .

Let S = {vi |ni = 1, 1 � i � d − 1}. If |S| = 2, we can easily check that
σ(T

′
) > σ(T ), a contradiction to the choice of T .
Suppose |S| � 3. We will show that σ(T

′
) > σ(T ) by induction on the

order of T in the following. Assume that the result holds for maximal trees T
in T (n, k) of order less than n.

Now, let T be a maximal tree of order n in T (n, k). Let N (v j ) −
{v j−1, v j+1} = {y1}, we have

σ(T
′
) = σ(T

′ − y1) + σ(T
′ − [y1]) (12)

and
σ(T ) = σ(T − y1) + σ(T − [y1]). (13)

By induction assumption, we get

σ(T
′ − y1) > σ(T − y1). (14)

Also,
σ(T

′ − [y1]) = σ
[

Pj

⋃
Pd− j

⋃
(|S| − 1)P1

]
. (15)

One can easily see that V (Pj
⋃

Pd− j
⋃

(|S| − 1)P1]) = V (T − [y1]) and
E(Pj

⋃
Pd− j

⋃
(|S| − 1)P1]) ⊂ E(T − [y1]). So

σ(T
′ − [y1]) = σ

(
Pj

⋃
Pd− j

⋃
(|S| − 1)P1

)
> σ(T − [y1]) (16)

by lemma 4.
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Combining (12) and (13) with (14) and (15), we get σ(T
′
) > σ(T ). Thus,

by the principle of mathematical induction, we know that σ(T
′
) > σ(T ) for any

maximal tree T in T (n, k) in this case. It is a contradiction to the choice of T .
Therefore, the desired result follows from the proofs of cases 1 and 2.

In the following, we will determine the unique trees in T (n, k) having the
first largest Merrifield–Simmons index.

Theorem 8. Let T be a tree in T (n, k) with 3 � k � n − 2, then σ(T ) �
σ(T1,1,...1,(n−k)) with equality holds if and only if T ∼= T1,1,...1,(n−k).

Proof. Suppose T is a tree in T (n, k) with σ(T ) taking the largest value. It fol-
lows from lemma 7 that T ∼= T1,1,...,1,s,t , where min{s, t} � 1 and max{s, t} � 2.
without loss of generality, we may assume that t � s hereinafter.

In the following, we will prove that T ∼= T1,1,...1,(n−k).
Suppose that t = 2. If s = 1, then T ∼= T1,1,...1,2 and the result holds. So,

we may assume that s = 2.
Let u be the unique branched vertex in T . Let uvs

1v
s
2 and uvt

1v
t
2 denote the

path with respect to s and t , respectively.
Let T

′
be obtained as follows

T
′ = T − vs

1v
s
2 + vs

2v
t
2.

Let t be the number of pendent vertices in N (u). Since T ∼= T1,1,···1,s,t and
T � Sn, then t � k − 1.

One can easily get that

σ(T
′
) = σ(T

′ − u) + σ(T
′ − [u]) = 5.2t+13k−t−1 + 3.2k−t−2

and

σ(T ) = σ(T − u) + σ(T − [u]) = 2t 3k−t + 2k−t .

Then σ(T
′
)−σ(T )=7.2t 3k−t−1−2k−t−2 >0, a contradiction to the choice of T .

So we may assume that t � 3. By uv1 . . . vt , we denote the path with respect
to t . We will show that σ(T ) � σ(T1,1,...1,(k−1)) by induction on the order of T .

Assume that the result holds for all trees T in T (n, k) with small values of n.
Since t � 3, then T − vt ∈ T (n − 1, k) and T − [vt ] ∈ T (n − 2, k). Hence by

inductive hypothesis, we have

σ(T − vt ) � σ(T1,1,...1,(n−k−1))

with equality holds if and only if T ∼= T1,1,...1,(n−k−1) and

σ(T − [vt ]) � σ(T1,1,...1,(n−k−2))

with equality holds if and only if T ∼= T1,1,...1,(n−k−2).
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Therefore

σ(T ) = σ(T − vt ) + σ(T − [vt ])
� σ(T1,1,...1,(n−k−1)) + σ(T1,1,...1,(n−k−2))

= σ(T1,1,...1,(n−k)).

It is not difficult to see that the above equality holds if and only if T −vt
∼=

T1,1,...1,(n−k−1) and T −[vt ] ∼= T1,1,...1,(n−k−2), which implies that T ∼= T1,1,...1,(n−k).
This completes the proof.

3. Trees in T (n, k) with the second largest value of Merrifield–Simmons index

We begin with an important lemma which is crucial to the proofs of our
main results in this section.

Lemma 9. For 2 � i � 
n
2�, i �= 3 and n � 6, we have F3 Fn+1 > F5 Fn−1 >

Fi+2 Fn+2−i .

Proof. It is easy to prove that F3 Fn+1 > F5 Fn−1 and F5 Fn−1 > F4 Fn. So we
need only to prove that F5 Fn−1 > Fi+2 Fn−i+2 for 4 � i � 
n

2�. Note that

Fi+2 Fn−i+2 − Fi+1 Fn−i+3 = (Fi+1 + Fi )Fn−i+2 − Fi+1(Fn−i+2 + Fn−i+1)

= −(Fi+1 Fn−i+1 − Fi Fn−i+2)

= (Fi + Fi−1)Fn−i+2 − Fi (Fn−i+1 + Fn−i )

= Fi Fn−i − Fi−1 Fn−i+1

= · · ·
= (−1)i (F2 Fn−2i+2 − F1 Fn−2i+3)

= (−1)i+1 Fn−2i+1.

So, for 4 � i � 
n
2�, we have Fi+2 Fn−i+2−F5 Fn−1 = (Fn−9−Fn−7)+(Fn−13−

Fn−11) + · · · < 0, that is F5 Fn−1 > Fi+2 Fn−i+2. This completes the proof.

The proof of the following lemma is trivial, so we omit here.

Lemma 10. Let T be a tree in T (n, k) with 3 � k � n − 2. If T � T1, 1, ...1, (n−k),
then σ(T ) � σ(T1,1,...1, s, t ) with equality holds if and only if T ∼= T1,1,...1, s, t ,
where t � s � 2 and s + t = n − k + 1.

Theorem 11. Let T be a tree in T (n, k) with 3 � k � n − 5. If T �

T1, 1, ...1, (n−k), then σ(T ) � σ(T1,1,...1,3,(n−k−2)) with equality holds if and only
if T ∼= T1,1,...1,3,(n−k−2).
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Proof. Let T be a tree in T (n, k) with 3 � k � n−5 such that T � T1, 1, ...1, (n−k).
By lemma 10, σ(T ) � σ(T1,1,...1,s, t ) where t � s � 2 and s + t = n−k +1. More-
over, the above equality holds if and only if T ∼= T1,1,...1, s, t . So it is sufficient
to prove that σ(T1,1,...1,s, t ) � σ(T1,1,...1,3,(n−k−2)) with equality holds if and only
if T1,1,...1,s, t

∼= T1,1,...1,3,(n−k−2).

Let T ∼= T1,1,...s, t and u be the unique branched vertex in T . Since k � 3,
there must exist one pendent vertex, say w in T , which is adjacent to u. Applying
induction on n and k.

It follows from lemma 1. that

σ(T ) = σ(T − w) + σ(T − [w])
= σ(T

′
) + 2k−3σ(Ps)σ (Pt )

= σ(T
′
) + 2k−3 Fs+2 Ft+2,

where T
′ = T − w ∈ T (n − 1, k − 1).

By induction assumption, we have σ(T −w) = σ(T
′
) � σ(T1,1,...1,3,(n−k−2) −

w
′
), where w

′
is one pendent vertex adjacent to the unique branched vertex u

′
in

T1,1,...1,3,(n−k−2). Also, it follows from lemma 9. that Fs+2 Ft+2 � F5 Fs+t−1 for all
2 � s � 
 s+t+4

2 � with equality holds if and only if s = 3. since T � T1, 1, ...1, (n−k),
then 4 � s + 2 � t + 2 and σ(T − [w]) = 2k−3 Fs+2 Ft+2 � 2k−3 F5 Fs+t−1 =
σ(T1,1,...1,3,(n−k−2) − [w′ ]), where w

′
is given as above. So

σ(T ) = σ(T − w) + σ(T − [w])
� σ(T1,1,...1,3,(n−k−2) − w

′
) + σ(T1,1,...1,3,(n−k−2) − [w′ ])

= σ(T1,1,...1,3,(n−k−2)).

Moreover, the above equality holds if and only if T −w ∼= T1,1,...1,3,(n−k−2) −w
′

and T − [w] ∼= T1,1,...1,3,(n−k−2) − [w′ ], which leads to that T ∼= T1,1,...1,3,(n−k−2).
This completes the proof.

When n = k −4, the next theorem determined the unique tree in T (n, n −4)

which attains the second largest value of Merrifield-Simmons index.

Theorem 12. Let T be a tree in T (n, n − 4) and T � T1, 1, ...1, 4, then σ(T ) �
σ(T1,1,...1,2,3) with equality if and only if T ∼= T1,1,...1,2,3.

Proof. For any tree T in T (n, n −4). If T � T1, 1, ...1,1, 4, then by lemma 10., we
have σ(T ) � σ(T1,1,...1,s,t ) where t � s � 2. Since the tree T ∼= T1,1,...1,2,3 is the
unique tree of the form T1,1,...1,s,t with t � s � 2, then the desired result follows.

When n = k − 3, one can easily get the following.

Theorem 13. Let T be a tree in T (n, n − 3) and T � T1, 1, ...1,1, 3, then σ(T ) �
σ(T1,1,...1,2,2) with equality holds if and only if T ∼= T1,1,...1,2,2.
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The proof of this theorem is similar to that of theorem 12., so we omit here.
In the following, we determine the unique tree with the second largest Mer-

rifiled-Simmons index among all trees in T (n, n − 2).

Theorem 14. Let T be a tree in T (n, n − 2). If T � T1,1,...1,2, then σ(T ) �
σ(S2,n−4) with equality holds if and only if T ∼= S2,n−4.

Proof. For any tree in T (n, n − 2), we must have T ∼= Sa,b(a � 1 and b � 1).

Since T � T1,1,...1,2 and T1,1,...1,2 ∼= S1,n−3, then we may assume that T ∼= Sa,b
with b � a � 2. Noting that σ(Sa,b) = 2a(2b +1)+2b. So σ(Sa−1,b+1)−σ(Sa,b) =
(2a−1 + 2b+1) − (2a + 2b) = 2b − 2a−1 > 0. Then we have σ(Sa,b) � σ(S2,n−4)

for all trees T in T (n, n − 2) and T � T1,1,...1,2 with equality holds if and only if
T ∼= S2,n−4.
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